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EVALUATION

This effort is a part of Research Area 7, Electronics, Sub-Area 3
Communications. The objective is to define and assess adaptive nulling
algorithms compatible with adaptive antennas with large numbers of antenna
elements or weights. This research work supports RADC TPQ 4A, C3 Surviv-
ability, Thrust - Communications ECCM. The overall objective is to advance
the state-of-the-art in adaptive array antennas to provide an Electronic
Counter Countermeasure (ECCM) capability for Air Force Communications Systems.

.In this research effort; a new adaptive nulling algorithm was formulated
and modeled by computer simulation. The algorithm is based on a newly
developed generalized performance function that allows specification of the
directivity pattern of the antenna. The new performance function permits

constraints on the antenna gain in desired directions while minimizing

interfering signals. The strength of the constraint can be varied such that
deviations from it can be controlled, i.e., important locations can be
stiffened so that deviation from it remain small while constraints in less
important directions can be made softer so that larger vairations are
permitted. This algorithm is considered to be a significant advance over the
conventional least mean square error (LMS) algorithm, allowing use of excess
degrees of freedom to specify the antenna pattern. It also will allow use of
direction-of-arrival (DOA) desired signal discriminants in adaptive arrays in
applications where DOA information is not sufficiently accurate for
conventional algorithms. The next step should be to investigate hardware

implementation of the algorithm for specific communications applications.

SOV

OHN A. GRANIERO
Project Engineer
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1o AihUoultION
In the field of linear estimation, a common goal for the optimum
filter is to minimize the mean square error. The Widrow-Hoff Least
Mean Square (LMS) algorithm [1,2] is a well known algorithm used with
adaptive filters to approach the optimum filter. Subsequent researchers
have proposed various modifications to the LMS algorithm. These mudi-
fications have been introduced when the adaptive filter does nct
perform satisfactorily with respect to other criteria in which the
researcher is interested. Once modifications are introduced to the
algorithm, the agaptive filter is no longer trying to minimize the
mean square error, but is instead optimizing some other {(often unstated)
performance function.
This paper proposes the explicit addition of terms tc the perform-
ance function reflecting the designer's additional criteria. A
specific modification is studied: the addition of "soft” constraints.
With a soft constraint, some constraint error results because the
weights do not exactly solve a specified set of linear equalities.
The optimum filter tries to minimize this constraint error simultaneousty
with the error incurred by not performing perfect least mean square
estimation. The "soft-constraint LMS algorithm", closely related to
the LMS algorithm, is derived which causes the adaptive transversal
filter to approach the optimum filter. Convergence properties of this
algorithm are studied. A relation with.unexpected properties between
the output power of a signal from the optimum filter and the signal's
input power is derived. An application in the area of adaptive antenna

arrays is presented as an example of a use of the proposed performance




function and the corresponding adaptation algorithm. The relationship

between the soft-constraint LMS algorithm and other versions of the LMS

algorithm is discussed.




II. PREVIOUS WORK IN MODIFIED LMS ALGORITHMS

Adaptive filters using the LMS algorithm have been proposed for many
applications [3-7]. However, in some situations it has been necessary =or
\ desirable to modify the algorithm [8-12]. Frost [9] projinsed (rrcing =ne
weights to exactly satisfy a set of Tinear equalities, which are calied
here a set of "hard constraints." This modification of the LMS al.oriwrm
has been applied to adaptive antenna arrays, to force the gain of the
array to be exactly unity in a specified direction, while attenuating

signals arriving from other directions.

Another modification of the LMS algorithm is the "leaky" LMS
algorithm. This algorithm has a leak factor, so that in the absence of
inputs the weights decay to zero. This form has been proposed independ-
ently by several researchers [11-14]., Using the property that the leak
is equivalent to introducing a white noise in the input of the filter,
Treichler [11] proposed using the algorithm to modify the characteristics
of an adaptive line enhancer in a desirable manner. Ahmed et ai [12]
used the leak effect to reduce numerical instabilities cccurring in their
application. White [13] showed that the leak could reduce inaccuracies
caused by imperfect hardware multipliers.

Zahm [14] used the leaky LMS algorithm with adaptive antenna arrays

to suppress strong "jammers" in the presence of weaker signals. However,

using the leaky LMS algorithm alone resulted in the undesirable character-

e i AL

istic that the array rejected all signals (and jammers) after a period of
time. 7o counteract this effect, Zahm introduced a set of "steering"

weights into the algorithm, so that the weights of the adaptive array




converge to the steering weights in the absence of any jammer: or sijrals.

These steering weights prevent the adaptive antenna array from turning

itself off. Also, the steering weights Zahm chose as an example introduc-

ed desirable effects in the directivity pattern of the array.

Extending Zahm's work and the work on the leaky LMS algorithm

results in the modification to the LMS algorithm discussed here.
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I1. DEFINITIONS AND TERMINOLCGY FOR THE ADAPTIVE TRANSVERSAL FILTER

Aithough applicable to any linear combiner, this work assumes for
ease of discussion that the performance function and the soft-constraint
LMS algorithm developed later are used with an adaptive transversal
filter, as illustrated in Figure 3-1. Definitions and terminclogy for
the adaptive filter follow.

A sampled time sequence u(j) is the input to an n-1 delay transver-
sal filter, where j is the time index of samples taken. The n weights
Wos Wis o c-.s W _qoc€aN be adjusted by the adaptation algorithm as time
progresses. The filter output y(j) is compared against a time sequence
d{j), which is called the desired signal. (The source and nature of the
desired signal varies with the application.) The purpose of tne filter
is to provide an estimate y{(j) of the desired signal d(j). The differ-
ence between d(j) and y(j) is called the error signal e(j).

The input sequence u(j) may contain one or all of three types of
signals. A signal may be noise; it may be a deliberately produced
sequence but of no use in forming the estimate (an interferer or jammer);
or it may be a sequence relevant to estimating d(j).

The values at the taps of the transversal filter at time j are

denoted by the data vector X{(j):
Y . . : T
X(3) = fu(d) u(3-1) ... uw(@-n+1)] . (3-1)
The set of n weights is written in vector form as:

A T
W= fwg wy oo W] . (3-2)

bl 1L ot s o e e e e
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Then the filter output y(j), the estimate of d(j), is expressed as

the inner product of two vectors:
y(5) = XTGW = W)

The error signal is simply

e(j) = d(j) - ¥(3)

EEE——— T ——
it "

(3-3)
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IV. THE PERFORMANCE FUNCTION

Any function measuring the performance of an adaptive filter must
reflect the concerns of the filter designer. The basic consideraticn
is often simply that estimation is being performed. The performance of
an adaptive filter in estimating an unknown signal is often measured
by the mean square error, a widely used criterion [15-17].

But the designer may recognize additional considerations in some
applications. Using an adaptive antenna array as an example, it is
sometimes desirable to specify the array gain in a particular direction,
provided this requirement does not increase the estimation error
{mean square error) excessively. But if the estimation error does
increase too much, it may be possible to decrease it significantly while
still staying close to (though not exactly meeting) -the gain specifica-
tion.

The array example shows that the performance function must do two
things. First, it must measure the extent to which the array gain
specification is violated by the chosen filter, as well as measure the
estimation error. Second, the performance function must weight the
relative contributions of the estimation error and of the gain specifi-
cation error, so that a balance may be struck between the two sources
of error.

A performance function p(j) satisfying these two considerations is:

m )2

p(3) 2 e+ T ble )%, (4-1)
i

where E{a} denotes the expected value of a. The first term, E{ez(J)},




o

is the mean square error (the estimation error); the second term is the
weighted contribution of the specification (“constraint") errors.
Definition (4-1) assumes that the designer specifies m constraints, and
that the error resulting from not exactly meeting constraint i is e
The designer selects the non-negative constant bi to specify the
relative importance of the ith constraint error compared to the estima-
tion error. The greater bi is, the more the error €. affects the
value of the performance function.

The relation between the constraint errors e.; and the adaptive
filter's weights is still unspecified. The filter designer is free to
choose any function. Different selections will produce different
adaptation algorithms. The form for constraint error e.; studied in
this paper is a linear function of the weight vector.

As an example, return to the adaptive antenna array. Let the ith
constraint specify the desired gain in a particular direction at a
specified frequency. The actual gain of the array in this direction

(at the specified frequency) is calculated by a linear expression:

gain = A1TN , (4-2)

where Ai is a constant vector with n components. (Section X contains
details for constructing Ai') Thus, if the desired gain is the scalar

hi’ the constraint error is:

4 T

e Aiw -hy . (4-3)

ci

Using this form for the constraint error in (4-1) results in the

performance function studied here:

s i . cistitiiis s : i




m
pli) = EL()} + 2 b (ATN-n)E (4-2)
i=]

This performance function is written in matrix form as:
N e 2y T .
p(i) = E{e"(i)} + (AW - H) B(AW - H) , (4-5)

where A is the mxn matrix composed of the vectors A;:

A

A S [A A S s LI (4-6)

2 cee Ay m

B is the mxm diagonal matrix with diagonal elements bi:

A
B = diag[b],bz,...,bi,...,bmj ; (4-7)

and H is an m dimensional vector composed of the individual desired

constraint values hi:

A T
H = [h] h2 e byl hm] . (4-8)

This performance function (4-5) will be called a "soft-constraint least
mean square error performance criterion."” The constraints are called
soft because, unlike constraints in most optimization problems, they
can be violated (not satisfied exactly).

The goal of the adaptation algorithm which is developed in section
VIII is to find the weight vector that minimizes the performance
function p(j) in (4-5).

The dependence of p(j) on the weight vector W is important. The
absence of non-global minima is desired, since this absence helps
prevent an adaptation algorithm from settling to an incorrect weight

vector (i.e. finding a local optimum). The dependence of p(j) on W is

10
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obtained by expanding the mean square error term in (4-5) and using

(3-3):

2

E(e?(3)} = E{[d(j)-y(j)1%}
= E{dz(j) - 2d(j)XT(J)w + wa(j)xT(j)w}
= E(d?(5)} - 2PT(5)W + WR(GW (4-9)

where the cross correlation between the data vector X(j) and the

desired signal d(j) is denoted by P(j):

2

P(J) E{d(J)X(3)} (4-10)

and R(j) denotes the autocorrelation matrix of the data vector:
. A .
R(3) = EX(X (Y . (4-11)

Substituting (4-9) into (4-5) expresses the performance function

directly in terms of the weight vector W:

p(i) = E{dz(j)} - ZPT(j)w + wfg(j)w + (AW - H)Tg(Aw - H) . (4-12)

Clearly, p(j) is a quadratic function of the weights. Because it is a
sum of squared quantities, it cannot be negative. Thus one of two
situations exists. The first possibility is that there is exactly one
minimum to the performance function, and only one weight vector achieves
this minimum., This situation may be visualized as a parabolic bowl in a
hyperspace of dimension n. The second possibility is that the perform-
ance function attains the same minimum value for a whole set of weight
vectors. In this case the set of weight vectors forms a connected

space so that all minima of the performance function are adjacent to one

N




another; there are no isolated minima. This situation may be visualized
in an n-dimensional hyperspace as a trough, equally deep at all points
along the bottom of the trough, and with parabolic sides to the trough.
This paper's primary interest is on the first case, where the
weight vector yielding the optimum (minimum) value of the performance
function is unique. The analysis can, if desired, be extended to the
second situation, by essentially considering a smaller hyperspace which

contains a unique minimum.

12




V. THE OPTIMUM FILTER

This section derives an expression for the optimum weight vector,
defined here as the unique weight vector specifying the filter which has
the optimum (minimum) performance p(j). The condition under which the
minimum p(j) occurs with a non-unique weight vector is also determined.

Any weight vector W minimizing the performance function p(j) forces
the gradient of p(j) to zero. From (4-5), the overall gradient of pn{j;

Wwith respect to W is:

te2(3)r + T, laN - H)TBGAN - 1)) (5-1)

pr(j) = VNE
Analyzing the first term by taking the gradient of (4-9) yields:
2., . T
VwE{e (3} = -2[P(J) - R(JIW] . (5-2)

This first term of the overall gradient comes from the mean square error
(estimation error) term of the performance criterion. This is the same
gradient used to develop the LMS algorithm.

Analyzing the second term of (5-1) yields:

7, ((AN - H)TB(AN - H)] = 2[AB(AW - H)]" . (5-3)

This second term is due entirely to the soft constraints imposed by the
filter designer.

From (5-1) the overall gradient is the sum of (5-2) and (5-3):
o P T T
7,p(3) = -20P(3)-R(3)N1T + 2[ATB(AW - W)]T . (5-4)

The optimum value for W occurs when the gradient (5-4) is set equal




to zero, yielding:

[R(j) + ATBATW = P(3) + ATBH . (5-5)

Thus the necessary condition for the optimum (minimum) performance to
occur at a unique weight vector is that the matrix 5(j)+AT§A be nonsin-
gular. Under this condition, the unique optimum weight vector, denoted

wopt(‘]) ’ 'iS:

Hope(3) = [R(3)*ATBAT ' [P(5)+aTBH] . (5-6)

Note that it is not necessary for either R(j) or ATgﬂ_to be nonsingular.
In fact, one use for the soft-constraint LMS algorithm arises when the

data vector autocorrelation matrix R(j) is indeed singular (or possibly
just il1-conditioned). In such a case a set of soft constraints can be
generated to yield a unique optimum weight vector, as has been done with

the leaky LMS algorithm [12].

14
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VI. AN ASSUMPTION OF STATIONARITY

The remainder of this work assumes that the signals d{(j) and u(j)
re generated by stationary stochastic processes. Thus, the statistics
(i) and R(j), the performance criterion p{(j), and the optimum weight

ector W__.(j) are constant, and are now denoted by P, R, p, and wopt

opt
espectively, dropping the time index j.

Using this assumption of stationarity, the performance function

) is now written from (4-5) as:

p = E(e2(3)) + (AW - W)TB(AW - H) , (6-1)

the gradient of p from (5-4) is:

vp = -20p - W17+ 2(ATB(AW - H)DT (6-2)
and the optimum weight vector wopt is written from {5-6) as:
. Tony-1 T
Wopt = (RFA'BA)™' (PHATBH) . (6-3)
15




I1. DETERMINATION OF THE OPTIMUM WEIGHT VECTOR BY GRADIENT SEARCH

Calculating the optimum weight vector using (6-3) is not always fea-
sible, even when all quantities are known. This may be due to the size of
the filter, or to numerical difficulties caused by properties of ths mat-
rices. Thus alternative approaches have been devised. A common technique
is to make successive approximations to the optimum weight vector. Given
one estimate of the weight vector, denoted by W(j), the next estimate,
W(j+1), is iteratively generated from W(j), governed by how well W(j)
satisfies (5-5). The time index j denotes sequential estimates since it
is assumed here that one update occurs at each time instant.

The technique of successive approximation used in this research is
called gradient search [18]. The gradient of the performance surface
is calculated for the current value of the weight vector, W(j). The grad-
ient specifies the direction of weight vector change which will increase
the performance function p most rapidly; but since the goal is to reduce
the performance function, the next estimate of the optimum weight vector
is obtained by moving from the current estimate in the direction opposite
to that of the gradient, through a distance proportional to the magnitude

of the gradient:
: - . T 5
W(i+1) = W(3) - wopp s (7-1)

where u is a positive constant chosen by the filter designer.

Using (6-2) for VP in (7-1) gives the update equation:

N(3+1) = W(3) + 2ulP-RW(§)] - 2uATBLAW(J)-H] .

16
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Repeatedly using this update equation causes the estimate of the optimum
weight vector to approach the actual optimum wopt of (6-3), provided . is

small enough (see section IX).
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I1I. THE SOFT-CONSTRAINT LMS ALGORITHM

The algorithm (7-2) for approaching the optimum weight vector wopt
is applicable only if all quantities are known. Such knowledge is gener-
ally not available in practice. If the statistics of the input signal
u(j) are unknown, then P and R are unknown. This can occur when a known
signal is subject to additive noise, is passed through a filter whose
characteristics are not perfectly known, or is distorted. Nevertheless,
it is still possible to perform signal estimation subject to soft con-
straints. To do this, the update equation (7-2) is modified by replacing
P and R with estimates. The estimates chosen must depend upon the input

signal u(j), so that these estimates are based on data statistics,

rather ti..n on a priori guesses. The estimates chosen are:

P = d(3)X(J) »
5 LT (8-1)
R = X{(3)x"(J)
4
It is easily shown that these estimates are unbiased:
E(P} = E{d(§)X(j)} =P , |
(8-2)
ER) = EX(3)XT(§)} = R .
Thus the gradient search algorithm (7-1) is replaced by:
oy g ~T
N(J+]) = w(J) - vap s (8‘3)

where an estimate »f the gradient is used in place of the true gradient.

This means that the estimates P and E replace the true values of P and R




in (6-2), yielding:

vp = -2[P-Ru(3)]T + 2ATBIAN(H) DT . (8-4)

Substituting (8-1) into (8-4) results in:

> . . . A . .
TP = -2[d(EXE) XX (DU + 26aTBlAN() 1T (8-5)
Using definitions (3-3) and (3-4) in (8-5) and rearranginy vields:
TP = -2e(3)X(5) + 2Bl DT 15-6)
Substituting (8-6) into the update equation (8-3) results in:
W(G*H1) = W) + 2ue()X(3) - 2uATBTAN(§)-HT , (8-7)
gradient due gradient due to
to estimation constraint errors
error
or;
W(3+1) = (L-20ATBA)W() + 2ue(§)X(3) + 2uA"BH (8-8)

Equations (8-7) and (8-8) are alternate forms of what is defined here as

the "soft-constraint LMS algorithm."
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IX. STATISTICAL PROPERTIES OF THE SOFT-CONSTRAINT

LMS ALGORITHM WEIGHT VECTOR

Random Noise in the Weight Vector

If the steepest descent update algorithm in (7-2) is used to adapt
the weight vector, the resulting weight vector sequence depends cniy on
P, R, and the weight vector's initial value. In this ideal case, P and
R are known a priori. Hence, a specific sequence is generated, regard-
less of which ensemble member of the stochastic processes generating
u(j) and d(j) occurs. This is not true, however, with the soft
constraint LMS algorithm {8-7) or (8-8). Although the gradient term in
(8-4) due to the soft constraints is calculated perfec.ly from the
designer's specification of the soft constraints and knowledge of the
current weight vector, the term due to the mean square error is only an
estimate, since P and é are estimates of P and R. The estimate chosen
results in a random quantity, since it depends on the actual sequences
u(j) and d(j). This results in an ensemble of weight vector sequences.
The ensemble can be pictured as arising from a bank of adaptive filters,
all beginning with the same initial weight vector, but all receiving
different ensemble members for u(j) and d(j). This section discusses

the statistical properties of this ensemble of weight vectors.
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Convergence of the Mean Weight Vector

Theorem 1: Convergence of the Mean Weight Vector

[f 1) The soft-constraint LMS algorithm (8-7) or (8-8) produces
a weight vector sequence W(j) from a data vector seauence

X(j) and a desired signal sequence d(j), and if

2) W(J) and X{Jj) are statistically independent, and if

3) The matrix BfATﬁA‘is nonsingular, and if

4) 0<u<
max

where A .. 8 max{eig{BfATEAJ},
eig{Y} is the set of eigenvalues of matrix Y,
and max{a set} is the maximum value of the set,
Then in the limit the mean weight vector converges to the optimum
weight vector:

Tim E{W(J)} = W

Joeo

Opt y (9-])

where E{W(j)} is the expected value (mean) taken over the ensemble

of weight vectors at time j.

The proof of this theorem is contained in Appendix A.
The definition of convergence used in Theorem 1 is weaker than that
used with stochastic approximation methods [19]. The latter require

that in addition to the mean weight vector converging to the optimum

value as given in (9-1), the weight vector's covariance must go to zero;
meaning that every member of the ensemble of weight vector sequences
must approach the optimum. However, stochastic approximation methods
suffer from the disadvantage that if the signal statistics vary slowly

(are not strictly stationary), the weight vector cannot track the time-
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varying optimum value. By contrast, the soft-constraint LMS algorithm
can follow a slowly moving optimum weight vector; the exact character-
istics in this environment are a subject for further study.

The second condition of Theorem 1, that for convergence W(j) and
X(j) must be statistically independent, is not met when the soft-constraint
LMS algorithm is applied to a transversal filter (Figure 3-1). Due
to the nature of the algorithm, W(j) is a function of all past data
vectors up to X(j-1). And because of the operation of a tapped delay
-1ine, X(j) is a vector consisting of exactly n-1 elements of the vector
X(j-1). Thus, since W(j) and X(j) are both functions of X(j-1), they
cannot be statistically independent of each other. However, when the
adaptation constant p is small, W(j) depends only weakly on X{(j-1);
hence the cross-correlation between W(j) and X(j) is small, yielding a
close approximation to the assumption of independence. The effect of
violating this assumption has been studied for the LMS algorithm

[20-22], with the conclusion that the weight vector mean converges to

a value which is biased away from the optimum weight vector; but a
value as close as desired to the optimum can be attained by making u
small., It is expected that the same behavior can be proved for the
soft-constraint LMS algorithm, due to the close similarity to the
standard LMS algorithm. Experience with the algorithm supports this
expectation.

Note that the maximum value for n permitting convergence of the

mean weight vector (condition 4 of Theorem 1) depends on Amax’ which

is unknown when R is unknown a priori. However, an upper bound on

Amax which is easy to compute in an actual problem is:




max{eig{BfATQA}}

S
"

max{eig{R}} + max{eig{A'BA}} . (9-2)

-~

A

This is true since all eigenvalues of R and ATQA are non-negative, so
the maximum eigenvalue of (B}ATQA) cannot be larger than the sum of the
maximum eigenvalues of R and ATQA, Now the maximum eigenvalue of AT@A
is available, since these matrices are predetermined by the filter
designer. And since the trace of an autocorrelation matrix is the sum
of its (non-negative) eigenvalues, the maximum eigenvalue of R must be

less than or equal to the trace of R, which is just n times the input

power E{uz(j)} to the filter. Thus

. eal
Anax < Tr{R] + max{eig{A BA}}

< n[E(W?(3)}] + max{eig{ATBA}} ; (9-3)
so that a sufficient condition on u to satisfy assumption 4 of Theorem
1 is:

1 s
n[E{u?(3)}] + max{eig{A BA}}

0<uc< (9-4)
which can be calculated without a priori knowledge of R. It is generally
more restrictive than the bound of Theorem 1.

The proof of Theorem 1 in Appendix A points out the interesting
fact that the mean weight vector follows exactly the same trajectory
that the weight vector would follow if perfect gradient measurements
were available. Thus the approximation to the gradient {inclusion of

"gradient noise") does not change the convergence rate of the mean
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weight vector.

Weight Vector Covariance

The weight vector covariance measures how much individual mempers
of the ensemble of weight vector sequences vary from the mean weight
vector. Since the mean weight vector converges in the limit t2 tne
optimum weight vector, the greater the weight vector covariance is,
the further individual members of the ensemble of weight vector sequences
are from the optimum in the 1imit. This variation implies pcor per-
formance..

The weight vector covariance matrix gww(j) is defined by:

Ce(d) = ECIN(I)-H(3) 1W(3)-H(3) 1T

ENGNT(3)Y - WHT () (9-5)

where E{W(j)}, the mean weight vector, is written as W(j) to simplify
notation.

Theorem 2: MWeight Vector Covariance

If 1) Theorem 1 holds, and if
2) W(j) and d(j) are statistically independent, and if

3) d(j) and u(j) are gaussianly distributed,

then the recursion equation for the weight vector covariance is: 4

Ca(3+1) = [L-20(RATBA)1C, 0, (4) [1-2:(R+ATBA) ] {
+ 02RO (IR + RTrLG, (3R] + RE(Z(3) Iz
+ [P-RW(§)I[P-RH(5)1T (3-6)

The proof of this theorem is contained in Appendix B.
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It is important to know when the weight vector covariance matrix
remains bounded, since on occasion the mean weight vector will converge
to the optimum value, while the weight vector covariance matrix grows
without bound. This means that the individual members of the weight
vector sequence ensemble vary around the proper solution, but the vari-
ations grow larger and larger. Such a situation is undesirable. The
following analysis finds conditions where the weight vector covariance
matrix is guaranteed to remain finite, and finds other conditions where
the weight vector covariance matrix is guaranteed to grow without
bound. The behavior of the weight vector covariance matrix is unde-
termined for the remaining cases.

The trace of the weight vector covariance matrix measures its
“magnitude”. Al1 off-diagonal terms of a covariance mafrix are less
than or equal in magnitude to the largest of the diagonal termsf; and
the diagonal terms are all positive; so the trace upper bounds the
magnitude of every element of the covariance matrix. Applying the
trace (a linear operator) to each term of (9-6) yields the recursion

equation for the trace of the weight vector covariance matrix:
TrlCyy(3+1)1 = Tr{{1-2u(R+ATBA)IC,  (3)[1-20(R+A"BA) ]}
+ @ {TrIRG (IR + Tr{RIT (G (18]
+ TrIRIEC’(3) ] oy 5))
+ [P-RR(3)1TTP-RA(3)1} . (8-7)

+This results from applying Schwarz's Inequality to the autocorrelation
function of a stationary process.
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Theorem 3: Sufficient conditions for boundedness of the trace

of the weight vector covariance matrix

1) If Theorem 2 holds, and

2

2) if a) Ymax

* YmaxTr[BJ-i xmaxxmin
and

Y
0 < u <
- 2 2
xmin * Ymax * Ymax

min

TeIR]

or if b) 72

max * YmaxTr[B]-z A A

max min
and

Xmax

Ou<— 2

+
Kmax Ymax * YmaxTrEEJ

where

A .
max{eig{R}}

<
]

A
max{eig{R+A BA}}

P
[}

Ao T
= min{eig{R+A BA}}

>
1]

Then Tr{gww(j)] will be bounded for all time.

The proof of this theorem is contained in Appendix C.

Theorem 3 presents conditions on u which are sufficient to
guarantee that Tr[gww(j)] is a bounded sequence. Next, necessary
conditions for Tr[gww(j)] to be a bounded sequence are determined;

however, these are not sufficient conditions.

26
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Theorem 4: Necessary conditions for boundedness of the trace

{ of the weight vector covariance matrix

For Tr[gww(j)] to be a bounded sequence, it is necessary that

1) Theorem 2 hold, and also that
2

2
‘ 2) a) When oo Yoo TrIRY 2 A
| xmax
thatin<2 7 H
Amax * Ymin * YminTr[BJ
2 2 2
b)  When Amin < Ymin YminTr[EJ = xmax’
that 0 < u < ! ;
2
fmin * YminT"(R]
c) When y2. +v . Tr[R] < A2
min min = =< "min’
Xmin
that 0 < u < 5 5 .
xmin * Ymin ¥ YminTr[E]

The proof of this theorem is contained in Appendix D.

Figure 9-1 demonstrates some of the interrelationships among the
bounds on u presented in Theorems 1, 3, and 4. It will be seen that
satisfying the bound on u is not always adequate to obtain good per-
formance. The figure is an example, obtained by plotting the various
bounds on u as a function of the power of a signal, uz, in a particular
environment*.

1'F1'gures 9-1 and 3-2 were obtained by assuming that a six tap filter

is being used, receiving a signal of power a2 and a noise of power
1, with Ymax receiving half the input power, and the rest of the power

distributed evenly among the remaining eigenvalues, and assuming that
the eigenvalues of ATEA_aI] have a value of 15.
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Adaptation Constant u

Abbreviations:
MWV = Mean Weight Vector
WVC = Weight Vector Covarijance’

MWV Curves:
di A: Bound on u guaranteeing MWV
1verges convergence (from Theorem 1)
B: Bound on y guaranteeing WVC
boundedness (from Theorem 3)
C: Bound on u necessary for WVC
boundedness (from Theorem 4)

7

MWV diverges
MWV

converges
&~

MWV converge
VC unbounded|

MWV converges, and
WVC is bounded

~

Signal Power 32

Figure 9-1: Sample relationships of‘b0unds on u
from Theorems 1, 3, and 4 (assuming
all other Theorem conditions met)
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Assuming all other conditions of Theorems 1 through 4 are met,

‘f u lies below curve A, then the mean weight vector will converge.

If u lies above A, then the mean weight vector will diverge, and the
conditions on Theorems 2, 3, and 4 are not satisfied, so behavior of
the weight vector covariance matrix is unknown. If u lies below

both curves A and B, the weight covariance matrix is guaranteed to be
bounded. The snaded area at the lower right of Figure 9-1 whersa curve
A lies above curve C is particularly interesting. If . lies within
this shaded region, the mean weight vector converges because . is below
curve A, but the weight vector covariance matrix is guaranteed to

grow without bound. This performance is unacceptable even thcugh the
mean weight vector converges.

Contrasting with the above is the area at the extreme left of
the figure (Tow signal power) where curve A Ties below curve B, the
bound on u which guarantees that the trace of the weight vector covar-
jance matrix remains bounded. In this case, and in this case only,
satisfying the bound on u to guarantee convergence of the mean weight
vector also guarantees that the weight vector covariance will remain
finite.

There are other areas of the figure where the mean weight vector
is guaranteed to converge, but it is unknown if the weight covariance
matrix will remain finite or not. Thus Figure 9-1 demonstrates that
the bound on . from Theorem 1 by itself is insufficient to guarantee
desired behavior; the bounds from Theorems 3 and 4 must also be con-
sidered.

A single upper bound for u is desired which guarantees that the

mean weight vector converges, and also guarantees that the weight
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vector covariance matrix remains bounded. A useful bound should be

T

calculable from brior knowledge and input signal power only, and not

depend upon knowledge about the data vector autocorrelation matrix R.
It can be shownT that the bound in (9-4), which meets the criteria of
caiculability and guarantees that the mean weight vector converges,

. does not guarantee boundedness of the weight vector covariance ma‘trix.

However, a bound satisfying these conditions is:

1

0<ucx {9-8)

3Tr[R] + TrA'BA]

Appendix E demonstrates that this bound satisfies the criteria listed
above.

The bound (9-8) is plotted as curve D in Fig. 9-2, along witn the
bounds for convergence of the mean weight vector and the bound guar-
anteeing boundedness of the weight vector covariance matrix. This
figure confirms that the bound (9-8) l1ies below the other bounds. It
also demonstrates that the bound (9-8) can be overly restrictive,
since it Tigcs so far below curves A and B. The distance between the
bound (9-8) and the curves A and B aepends partially on how closely
the traces of the matrices are related to the maximum eigenvalues; tne
closer the trace is to the maximum eigenvalue, the closer (9-3) wiil

be to curves A and B.

—
For example, consider the scalar case with Ymax=Ymin=1’ Tr(R]=1,

max{eig{ATBA}}=1 {(which implies xnax=2).
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Adaptation Constant y

Abbreviations:
MWY = Mean Weight Vecltor
WYC = Weight Vectir .21

Curves:
A: Bound on u guaraateeinc L,
convergence (fr = Tretrem |
B: Bound on y guareniee i al
boundedness (from Thoior 2
D: Calculable bound on . t ow (3-53
guaranteeing MWV convergjonc. an

WVC boundedness

(o)

Figure 9-2:

Signal Power 12

A calculable bound on u guaranteeing
mean weight vector convergence ana
weight vector covariance boundedness
{assuming all other Theorem condi“ivcis
met)
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X. AN APPLICATION TO ADAPTIVE ANTENNA ARRAYS

This saction demonstrates an application of the soft-constraint
LMS algorithm to adaptive antenna arrays. The soft constraints are
used to affect the shape of the antenna array's directivity patter

Fig. 10-1 shows the adaptive antenna array system. Each of t
six antenna elements is omnidirectional. The output of each anten
element, 5 through Sgo is fed to its own two-tap (and two-weignt)
adaptive transversal filter (TF] through TFG)' The summed outputs
of the filters form the system output y(j). It is assumed that no
desired signal d{j) is available, so the error signal e(j) is the
array's output y(j). The objective of the algorithm with this system
is to minimize the output power; simultaneously trying to keep the
array's gain in certain directions at certain frequencies close to
values specified by the designer.

The weight véctor oflthe antenna array system is constructed
by stacking the six weight vectors of the individual adaptive filters.
Denote the weight vector of transversal filter k at time j by the
two dimensional vector wk(j); the weight vector W(j) of the entire

system is then a twelve dimensional vector:

W(3) = THI(3) WO(3) ==+ W(3)  Wi(d)]. (10-1)

Construct the data vector X(j) for the entire system similarly.

The soft constraints will be used to specify desirable antenna
gains in a particular direction at a specified frequency.

Imagine the antenna array receiving a sinusoid of power Cz at

frequency W, from direction er. Denote the sinusoid at the input to
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Figure 10-1. Adaptive Antenna Array used in
Figures 10-2 through 10-12.




transversal filter TFk at time j by the phasor Crexp{i[mro+¢rk]}, where
¢rk is the signal's phase difference between sensor k and some arbi-
trary reference point. L is a function of the angle of arrival of

the signal (er) and of the antenna geometry. In this case the data

vector is:
Crexp{i[wro+¢r]]} (data in
Crexp{i[wr(j-7)7+¢r]]} TFl)
X(j) = : (10-2)
Crexp{i[wro+¢r5]} (data in
Lcrexp{i[wr(j-1)T+¢r6]}_ TFg)

Since the array output is XT(j)N(j): the array gain to this signal is
XT(j)N(j)/Crexp{imro} = [XT(j)/Crexp{iwro}]w(j). Define a vector
A. by X(3)/C explin T}

r exp{i¢r]} ]
exp{i(dyy-w,T)}

ne>

(10-3)

L exp(i@rs}

exp{i(¢r6-er)}

-

The array gain to signal r at time j is Alw(j). Suppose it is desir-

able that the array gain to this signal be Drexp{iqr}. Then the
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constraint is written as

T

AMW(3) = Dexplin.} , (10-4)

which is made a soft constraint. But W(j) is a set of real we . gits,
while Ar and Drexp{inr} are complex quantities. The proposed con-
straint can still be specified with purely real valuec b sepe-aricg

it into the real and imaginary parts:

Re{ATIN(J) = Re(D exp{in }} , (10-5)

Im{Ar}N(j) Im{Drexp{inr}} . {10-6)

This yields two constraints which are used as soft constraints. Thus
the antenna array attempts to keep a complex gain of Drexp{iqr} in
direction er at frequency W but since,khe constraints are soft, the
gain can vary from the specification (Drexp{inr}).

This procedure can be followed for several different sinusoids,
at the same or different frequencies, yielding a set of constraints.
Form the set of constraint vectors (Ar) into a matrix A; stack the
specified gains into a corresponding vector H. Then the set of soft

constraints is:

AW = H . (10-7)

Weight the soft constraints by constants br’ which compose the dia-
gonal weighting matrix B used in the algorithm (8-8) or (8-7).

Three different sets of constraints, derived as shown, are listed
in Tables 1, 2, and 3. The features and effects of each set of con-

straints are now studied.
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The Effect of Table 1 Constraints

Figures 10-2 through 10-6 show the first example of the use of soft
constraints. The soft constraints specify unity power gain at frequency
2, in the directions 0, 10, 120, 180, -120, -10 (in degrees). The

constraints are weighted equally at 1. Table 1 summarizes these

constraints.
Direction Amp1itude Phase Constraint
of of Desired of Desired Weighting
Constraint Gain at Gain Factor
(degrees) Frequency 2. (degrees)
O 0. "y By
0. 1. 180.0 1.
10 1. 177.3 1.
120 1. -90.0 1.
- 180 1. -180.0 1.
-120 1. -90.0 1.
-10 1. 177.3 1.

Table 1 - Constraint Set 1

Figure 10-2 shows the antenna directivity pattern that results when
the constraint equations (10-7) are solved for the weight vector which
satisfies them exactly. This figure is a plot of the power gain that a
signal at a frequency of 2 receives, as a function of the arrival
direction of the signal, when the weight vector is the solution to the
constraint equations.

Figure 10-3 shows the antenna directivity pattern resulting when a
unity power sinusoid at frequency 2 is received from 0 degrees, when the
antenna array system has adapted to the point of convergence. This

example (and all others in this section) also has an isotropic white

36




@ - Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-2. Antenna array directivity pattern determined
by soft constraints listed in Table 1.
(Weight vector frozen at the solution to the
constraint equations.)
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180°

a - Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-3. Antenna array directivity pattern after adaptation by
the soft-constraint LMS algorithm (8-8) with:

1) A sinusoid of power 1, frequency 2, from 0°
2) Soft constraints of Table 1
3) Isotropic noise of power 0.1

Pyt
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noise field impinging on the antenna array. The noise power at each
antenna element is 0.1. Recall that the goal is to minimize the output
power while trying to keep the constraint errors small (i.e. keep the
gain in the constraint direction close to the constraint values). It can
be seen that in the signal's direction the array gain has decreased
slightly from that of Fig. 10-2. But as the gain in the signal direction
has decreased, the constraint error in that direction has grown {as the
constraint errors in the 10 and -10 degree directions have also). Thus
the soft constraints result in the gain in the signal direction remaining
high, keeping the constraint errors low. The constraint errors at 120,
-120 and 180 degrees are kept small without increasing the system output
power significantly.

Figure 10-4 shows the converged antenna array directivity pattern
for the same constraints, when a unity power sinusoid at a frequency of
2 is received from 60 degrees, an angle not near any of the constraints.
When the adaptive filters reach convergence, the signal is attenuated by
30dB, while the constraint error remains small.

Figure 10-5 shows the antenna array directivity pattern for the

same set of constraints (Table 1) when the unity power sinusoid at a

frequency of 2 is received from 120 degrees, coincident with a constraint.

The attenuation in the signal direction is small compared to that of
Figure 10-4, but is greater than that of Figure 10-3, in which the signal
was arriving close to three constraints, instead of only a single
constraint.

Figure 10-6 is a plot of the converged array gain in the signal

direction, for all possible signal arrival directions. This plot is




1 Signa’

180°

& - Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-4. Antenna directivity pattern after adaptation by the
soft-constraint LMS algorithm (8-8) with:

1) A sinusoid of power 1, frequency 2, from 60°
2) Soft constraints of Table 1
3) Isotropic noise of power 0.1

40




Signal Power = 1.

1,/ .

120°

\-
\ ¢
| 10
\
1. T
180° 0°
10°

-120°

@ - Constraint (figures next to constraints points are
constraint weighting factors)

Figure 10-5. Antenna array directivity pattern after adaptation by
the soft-constraint LMS algorithm (8-8) with:

1) A sinusoid of power 1, frequency 2, from 120°
2) Soft constraints as listed in Table 1
3) lsotropic noise of power 0.1
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180°

@ - Constraint (figures next to constraint points are
cunstraint weighting factors)

Figure 10-6.

Converged array gain in the signai direction for all
possible directions of signal arrival.

Conditions:
1) Soft constraints of Table 1
2) Adaptation by soft-constraint LMS algorithm (8-8)
3) Sinusoid power = 1, frequency = 2
4) Isotropic noise of power 0.1
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obtained by placing the unity power signal at a specified direction,

calculating the optimum weight vector for this signal configuration,

using this optimum weight vector to calculate the gain in the signal

direction, and plotting this gain as a single point in Figure 10-€. Fur
example, in Figure 10-5 the gain in the signal direction (127 aeqrees’
is approximately -6dB. This same gain is plotted on Figui e ) i "n 1. ¢
120 degree position. Figure 10-6 demonstrates that for tic (on.trat .
specified in Table 1 the gain remains high in direction: ci <. 1,
constraints, but signals are more strongly attenuated when not c.s3e <.

constraints.

Effect of Table 2 Constraints

Figure 10-7 shows the converged array gain in the sigral Jirsciion,

Direction Amplitude Phase ‘ Constraint
of } of Desired of Desired Weighting
Constraint Gain at Gain Factor
(degrees) [ Frequency 2 {degrees)
O O e by
0 1. 180.0 .
10 1. 177.3 i.
120 1. -90.0 .01
180 1. -180.0 .0
-120 1. -90.0 .01
-10 1. 177.3 1.

Table 2 - Constraint Set 2

for all possible directions of signal arrival, for the set of constraints
in Table 2. These constraints differ from the previous constraints in
that the weightings in the 120, -120, and 180 degree positions are
decreased by a factor of 100. Figure 10-7 shows the effect: the array's

gain to signals arriving from directions ciose to the weak constraints
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180°

@ - Constraint (figures next to constraint points are
constraint weighting factors

Figure 10-7. Converged array gain in the signal directicn for
all possible directions of signal arrival.

Conditions:
1) Soft constraints of Table 2
2) Adaptation by soft-constraint LMS algorithm (8-3)
3) Sinusoid power = 1, frequency = 2
4) Isotropic noise of power 0.1
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is greatly reduced from the previous case (Fig. 10-6)}. This occurs

because the output power is significantly reduced by decreasing the array
gain in the signal arrival direction, while incurring only small
constraint errors du¢ to the low weighting coefficient. Thus tre weight-
ing coefficients control the "softness" of the constraint. A lirne
weighting coefficient implies that the decrease in output power must be
large to allow a small deviation from the constraint; a smali weignting
coefficient implies that greater deviation from the constraint is alicwed
with 1ittle penalty, so the algorithm can decrease the output power

significantly.

Effect of Table 3 Constraints

Figure 10-8 demonstrates the effect on the large lobe of Figure 10-7
when the two constraints at 10 and -10 degrees are moved to 60 and -60

degrees and simultaneously weakened by a factor of 100. Table 3 presents

Direction | Amplitude Phase Constraint
of of Desired of Desired Weighting
Constraint Gain at Gain Factor
(degrees) Frequency 2 (degrees)
8y Dr N br
0. 1. 180.0 1.
60 1. 177.3 .01
120 1. -90.0 .0
180 1. -180.0 .01
-120 1. -90.0 .01
-60 1. 177.3 .01

Table 3 - Constraint Set 3

this set of constraints. Comparing Figures 10-7 and 10-8 shows that

when two strong constraints are at the 10 and -10 degree positions as in
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180°
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@& - Constraint (figures next to constraint points are i
constraint weighting factors) j

!

i

Figure 10-8. Converged array gain in the signal direction for
all possible directions of signal arrival.
Conditions: !
1) Soft constraints of Table 3 ?
2) Adaptation by soft-constraint LMS algorithm (B-8) a
3) Sinusoid power = 1, frequency = 2
4) TIsotropic noise of power 0.1
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Figure 10-7, the angular sector over which a signal is received without
significant attenuation is much broader than when only a single strong

constraint is present, as in Figure 10-8.

Antenna Array Gain in the Constraint Directions

Figure 10-9 shows the gain in the 0 degree direction maintainred by
the soft constraint, for all possible arrival directions of a unit power
signal with a frequency of 2, for the constraints of Table 2. The plot
is calculated by placing the signal at a given direction, calculating
the converged weight vector, calculating the resulting gain at 0 degrees
(frequency of 2), and plotting it on Figure 10-9. The gain in the O
degree position remains close to the unity gain specification, decreasing
only when the signal is also close to O degrees. When the signal arrives
from close to 0 degrees, the array gain in the 0 degree direction drops
slightly to reduce the system output power, but cannot drop significantly
without causing large constraint errors.

Figure 10-10 shows the array gain in the direction of the much
weaker constraint at 180 degrees for all possible arrival directions of a
unit power signal with a frequency of 2 (again using the constraints of
Table 2). Since the gain in this direction can vary greatly without
incurring large constraint error (no strong constraints in this region),
the adaptive array concentrates on minimizing output power rather than on
maintaining the constraint, as seen by the wide variation in the array's

gain in this direction.

A Two-Signal Case

Figures 10-11 and 10-12 show a two signai case. Figure 10-11 shows
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Signal Arrival Direction

specified along the abscissa.

Conditions:

, 1) Soft constraints of Table 2, as listed

' 2) Adaptation by soft-constraint algorithm
I 3) Sinusoid power = 1, frequency = 2

F 4) 1Isotropic noise of power 0.1
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Figure 10-9. Array gain in the zero degree direction maintained by
4 the soft constraint, when array has been adapted to
convergence on a signal arriving from the direction
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10° 1.
=4
2 -10° 1.
-d
g 01 120° .01
a -120° .0}
g 180° .01
Eg 10 - 80 0
£
=
S .20 4
£
£
3 -30 o
>
2
|
<T
-40 -
-50 -+ T . T 1
-180° -90° o° 90" 180°

Signal Arrival Direction

Figure 10-10. Array gain in the 180 degree direction maintained by
4 the soft constraint, when array has been adapted to
convergence on a signal arriving from the direction

specified along the abscissa

Conditions:
1) Soft constraints of Table 2, as listed
2) Adaptation by soft-constraint algorithm (8-8)
i 3) Sinusoid power = 1, frequency 2
f 4) lIsotropic noise of power 0.1
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-120°

@ - Constraint (figures next to constraint points are
constraint weighting factors)

Figure 10-11: Antenna array directivity pattern after adaptation by
the soft-constraint LMS algorithm (8-8) with two
signals

Conditions:
1) Signal #1 power = 1, frequency = 2, from 0° R
2) Signal #2 power = 100, frequency = 2, from 10~
3) Soft constraints as listed in Table 2
4) Isotropic noise of power 0.1

[
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the antenna array directivity pattern for a particular signal configura-
tion, with the Table 2 constraints. The signal (#1) arriving from 0
degrees has a power of 1; the signal (#2) arriving from 10 degrees has a
power of 100. Both signals have a frequency of 2. The figure shows é
that the strong signal (#2) is greatly attenuated even though it is
arriving from a direction where a constraint is located. This is because
the signal is very strong compared to the constraint in this direction;
the array concentrates on attenuating the signal rather than on satisfy-
ing the constraint. The weak signal (#1) arriving from O degrees is only

slightly attenuated, because it is weak in comparison with any of the

constraints in the neighborhood. Note that the presence of the strong
signal has had little or no effect on the array’'s gain to the weak signal
(compare the gain with Figure 10-3).

Figure 10-12 shows the array's gain to the weak signal (#1) at O
degrees as a function of the arrival direction of the strong signal (#2).
This figure shows that the array's gain to the weak signal is only
affected by the strong signal when the strong signal is arriving from a
direction very close to that of the weak signal. When the strong signal
arrives from 0 degrees the two signals are inseparable; the array acts as
if there were only one strong signal. Since this composite signal is
strong compared to the constraint at 0 degrees, the array concentrates on
attenuating the composite signal. As the strong signal moves away from
the weak signal, the array is better able to resolve the two signals, and

continues to attenuate the strong signal, while allowing the gain in the

direction of the constraint at 0 degrees to increase again.




-10 4

Array Gain (in dB) to Signal #1

Constraints:
=20 1 Weighting
Dir Factor
0° 1.
-30 4 10° 1.
-10° 1.
-40 - 120° .01
-120° .01
180° .01
.'50 T T | 1
-180° -90° 0° 90°¢ 180°

Figure 10-12.

Arrival Direction of Signal #2

Array gain in direction of Signal #] maintained by
a soft constraint, when array has been adapted to
convergence with Signal #2 arriving from the
direction specified along the abscissa

Conditions:

1) Soft constraints of Table 2, as listed
Adaptation by soft-constraint LMS algorithm 58-8)
Sinusoid #1 power = 1, frequency = 2, from O
Sinusoid #2 power = 100, frequency = 2
Isotropic noise of power Q.1
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Summary

This section has demonstrated the use of soft constraints for
adaptive antenna arrays. It has shown that soft constraints can
maintain array gain in the presence of signals which are weak compared
to the constraints; but strong signals are attenuated. It was also
seen that the strength of constraints could be varied, and placing
constraints closely together could expand the angular sector over

which the array gain is maintained.




XI. QUTPUT POWER DUE TO A SIGNAL AS A FUNCTION QF ITS INPUT POWER

This section investigates the power at the output of a converged
soft-constraint LMS adaptive filter, due to a particular input signal;
relating the output power to the input power.

When fixed (non-adapting) filters are used for signal processing, an
increase in the input power of a signal always means a corresponding
increase in the output power of the filter. But this is not necessarily
true for adaptive filters. An increase in the power of any signal can
change the optimum filter. And the new optimum filter might attenuate
the signal more strongly than the previous optimum filter. It is possible
that the increase in attenuation is so great that the signal's increase
of input power is more than cancelled; so it is possibie that the output
power due to the signal is actually less than before. Thus, when a
signal increases its power at the input of an adaptive fiiter, the output
power due to the signal can actually decrease. This phenomenon is studied
in this section.

Assume that the time sequence u(j), the input to the adaptive filter,
consists of a stationary signal to be studied, denoted s(j); and that all
other signals in u(j) are also stationary, and when summed together are
denoted by n(j):

u(d) = s(3) +n(3) . (11-1)

Denote the autocorrelation of s{j) when it is in the tapped delay line

by azgss’ where az is the power of s{j). Denote the cross-correlation




between s(j) and the desired signal d(j) by f(a)PdS, where f(a) is a
function of the input power of s(j). (Several expressions for f(a)
are studied later in this section.) Assume that s(j) and n(j) are

uncorrelated:
q E{s{j)n(j)} =0 . (11-2)

Denote the autocorrelation of n{j) when in the tapped delay Tine by
Bnn’ and the cross correlation between n(j) and d{(j) by Pan:

With these definitions the complete input autocorrelation matrix
is azgss+gﬂn, and the complete input cross-correlation with the desired
signal is f(a )Pds+Pdn‘

Using (6-3) the optimum weight vector is:

R__+R_+A'BA)” [f(a)P PyntA TBH] . (11-3)

For ease of notation, denote Bﬂn+AT§ﬁ by U, and Pdn+5T§H by V; also

assume that U is a matrix of full rank. This yields:

U '][f(a)Pds+V] . (11-4)

+
RssY

The output power of the adaptive filter due to the input signal

under study s(j) is:

R 4
Pout = Wa Bssw . (11-5)

Using the optimum weight vector of (11-4) yields:

= [f(a)Py V1T (aPR +0) T oPR (PR +0) M [F(a)Py V], (11-6)

Pout -S 55 =

Appendix F demonstrates that since gss and U are both hermitian mat-

rices and U is nonsingular, a matrix S can be found such that:
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§T

Bes2 = ¥
T

where ¥ is a diagonal matrix, and I is the identity matrix. (S will

\ be a purely real matrix, since both Bss

§T = §f.) Rearranging (11-7) and (11-8) yields:
“Tye-1
Ry=3 ¥ (11-9)
u=sTIs, (11-10)
where (§T)'] is abbreviated to §TT. Substituting (11-9) and (11-10)

into (11-6) yields:

]+§-T_I_S_-] )']

©
\

out = [FlIPyrVIT(a®sTys”

\ . :"2§.-TX§.]

(a®s Tys Tes™ Is")"[f(a)pds+v]

2

[f(2)P V]S (a

[F(a)P gV 1Ts(alweD) "oy
Now since ¥ is a diagonal matrix (¥ = diag(wi)), Pout €an be
written in terms of individual components as:

n

out i51 (a® Vs Y

.th

where {S [f(a)P +V]}1 denotes the i~ element of the vector

sT[f(a) Py

(el D) ST ()P v

s=1v, (11-7)

S=1, (11-8)

and U are purely real. Thus

]

(02¥+1) 18T F(a)P PVl . (11-11)

2
n
Pout = L Pouti = ! -————————{s [Fla)P, V11 . (11-12)

{
4\‘
i
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PP

Thus the output power is the sum of a set of components p
2

outi

which vary individually as the input power a” of the signal under

study is varied. The value of an individual component p of the

outi
output power pout may be plotted as a function of the input power a2
once f{a) is known. Three cases are of particular interest:

Case 1: f(a) = a.
The signal under study s(j) is correlated with the desired signal d(j),
but the power of d{(j) remains constant even when the input power of

s(j) increases. This case can occur when d(j) is generated separately

from s(j). For this case, a component of (11-12) has the form

oy ;
2

(0 Wiﬂ )

Pouti = 2 §T[anS+V]}§ ) (11-13)
The shape of this function is shown in Figure 11-la. The figure
shows that the curve can have one of two forms, depending on whether
or not [§_TPds]i and [§Tv]i have the same sign. When the signs are the
same, the gain of the filter to s{j) increases slightly at first, then
decreases toward zero (as seen in Fig. 11-1b.) However, the rate of
decrease of gain compared to the rate of increase of input power is
such that the output power approaches an asymptotic value of
[§TPds]i/wi (as seen in Fig. 11-1a). The decrease occurs because s(j)
begins to dominate n(j) and overwhelm the soft constraints, so the
adaptive filter begins to do power equalization to make the power of
filter output y(j) match that of d(j). For opposite signs, Fig. 11-la
shows that the output power due to s(j) can increase, then decrease to
zero again, and finally increase to the asymptotic value. The reason

for the decrease is that initially the weight vector is dominated by
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Figure 11-1. Soft-constraint LMS adaptive filter gain to a
signal component, and the corresponding signal component
output power, as a function of the signal component input
power., Case 1: f(a) = a.




n(j) or the soft constraints, and the estimate of d(j) has the wrong

sign compared to d(j). Fig. 11-1b shows that the filter's gain begirs
with the wrong sign. As s(j) grows, it has more effect on the weight
vector. Fer a good estimate, the sign of the estimate and the filter
gain must change, causing the output power to go through zero at some
point.

Case 2: f(a) = a.

The signal under study s(j) is correlated with the desired signal d{j),
and d(j) is derived from s(j), so that the power of d(j) increases
linearly with an increase in the power of s(j). An example of this
relationship is the line enhancer configuration [3,4,11]. In this case
a component of (11-12) has the form

azwf

= P (11-14)

p .
outi (&2w1+1)

Figure 11-2a shows the shape of this curve. The asymptote of the output
power curves (Fig. 11-2a) is a parabola. When [§TPdS]i and [§Tv]i have
the same sign, the output power curve essentially follows the parabola;
the soft constraints (and/or n(j)) cause the weight to be of the pro-
per sign but larger than necessary, so the output power curve is above
the asymptote. For opposite signs, the weight must again change signs,
causing the dip to zero cutput power as seen, then increase once the
proper sign is obtained. Fig. 11-2b shows that in either case the fil-
ter gain approaches a constant.

Case 3: f(a) = Q.
The signal under study s(j) is uncorrelated with the desired signal

d{j). This occurs when s(j) is noise or interference. In this case,
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Soft-constraint LMS adaptive filter gain to a signal
component, and the corresponding signal component
output power, as a function of the signal component

input power. Case 2: f(a) = 32.




a component of (11-12) has the form

azw.
Pouti = m sl (11-15)
Figure 11-3a shows the shape of this curve. Here, the filter begins
to turn itself off as s(j) begins to dominate n(j) and the soft con-
straints. This curve is of strong interest because it shows that
strong signals can be attenuated much more than weak signals. This
phenomenon could be used to create adaptive filters which pass weak
signals but attenuate strong signals, effectively filtering signals
based on their strength. The quantity Vs determining where the peak
of this curve occurs is under some control by the filter designer,

since selection of the soft constraints affects Ve
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Figure 11-3. Soft-constraint LMS adaptive filter gain to a signal
component, and the corresponding signal component
output power, as a function of the signal component
input power. Case 3: f(x) = 0.
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XII. RELATION OF THE SOFT-CONSTRAINT LMS ALGORITHM
TO OTHER VERSIONS OF THE LMS ALGORITHM

The LMS Algorithm

The LMS algorithm defined in references [1-3] is:

W(i+1) = W(j) + 2ue(3)Xx(3) . (12-1)

By comparing (12-1) with the soft-constraint LMS algorithm (8-7) it is
seen that the LMS algorithm is a special case of the soft-constraint LMS
algorithm, since setting B = 0 in (8-7) yields (12-1). The effect of

setting B = 0 is that all of the soft constraints are turned off.

The Leaky LMS Algorithms

By examining (8-8) it can be seen that the "leaky" LMS algorithm
[(11-13]:

W) = wW(§) + 2we(3)X(J) (12-2)

js also a special case of the soft-constraint LMS algorithm. The leaky
LMS algorithm has a multiplier v on the W(j) term which is a positive
scalar less than one. The soft-constraint LMS algorithm has a correspond-
ing term leUATEA which is a matrix. However, if A is chosen to be an
identity matrix, and B is diagonal with the diagonal elements all equal

to a scalar vy, then the multiplier in the soft-constraint LMS algorithm

(8-8) reduces to the scalar 1-2uy.




c e amtie

The other difference between the leaky LMS algorithm (12-2) and the
soft-constraint LMS algorithm (8-8) is the presence of the driving term
ZHATEH in the latter. However, by choosing H to be zero, this term
disappears. Thus, the Teaky LMS algorithm is seen to be a special casa
of the soft-constraint LMS algorithm, by choosing the constraints in the
latter to constrain each of the weights to zero, with identizal weigh*-

ing on each of the constraints.

Zahm's Algorithm

Zahm's algorithm [14] is:

WEi+1) = wW(d) - 2uy(3)X(3) + v (12-3)

where V is a constant vector.

Zahm's algorithm is also a special case of the soft-constraint LMS
algorithm (8-8), when the matrices A and B in the latter are chosen in
the same manner as for the Leaky LMS algorithm, and a non-zero constraint
vector H is selected such that V=2uAT§H, and with no desired signal

available.

Frost's Hard Constraint LMS Algorithm

Frost's algorithm [9] is extremely similar to the soft-constraint
LMS algorithm (8-8) because the constraints are identical. The only
difference is that Frost requires exact solution of the constraints at
all times. Intuitively, one would feel that as the soft constraints are
stiffened, the soft-constraint LMS algorithm's solution would approach
that of the hard-constraint LMS algorithm. This is true, and can be
stated as follows: denrote the optimum weight vector for Frost's hard

constraint problem by whc' Now consider letting the weighting matrix B
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on a set of soft constraints for (8-8) be multiplied by a scalar vy, so
that the true weighting is yB. Then for the optimum weight vector wopt
in (8-8):

Tim W = W
- opt he
This relation is proved as Theorem 5 in Appendix G.
Thus the optimum weight vector of the soft constraint LMS algorithm
approaches the optimum weight vector of Frost's hard constraint LMS
algorithm in the 1imit as the hardness (weighting) of the soft constraints

goes to infinity.
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XIIT. CONCLUSIUNS AND DISLu$Sion

The designers of adaptation algorithms usually derive the
algorithms to minimize estimation error. But often the designer has
additional criteria for the algorithm to satisfy, which requires
modification of the algorithm. The underlying concept of this paper
is that the adaptation algorithm should be derived from a function
which explicitly includes terms involving all of the design criteria.

This paper has demonstrated the principle by combining a set of .
soft linear constraints with a mean square error criterion. Once the
performance function was so defined, the soft-constraint LMS algorithm é

was directly obtained.

s e a1

It has been proved that in a stationary environment and when

certain conditions are satisfied, the soft-constraint LMS algorithm

pemmmpney

causes the filter to converge, minimizing the performance function.

It was also shown that setting the adaptation constant to obey the
conditions for convergence in the mean was not always sufficient to
obtain good behavior; 1in some cases more restrictive conditions must
be observed. Since these conditions depend upon considerable a priori
knowledge of the environment, which is generally not available, an "
even more restrictive condition was proposed which has the advantage

of depending on the environment only in that the total input power

(a measurable quantity) must be known. 12
The usefulness of the soft-constraint LMS algorithm has been
shown by applying it to an adaptive antenna array (section X). The

constraints were changed in strength, with resulting changes in the
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directivity pattern of the array and in its response to inconing
sinusoidal signals. This example demonstrated the effect of varying
the "stiffness” of a constraint. A constraint in an important loca-
tion (direction of possible signal arrival) can be sti~fened sc th:t
deviations from it remain small, while constraints in less important
locations can be made softer so that larger variations are permitted.
This may in some cases prove advantageous as a "trade-off" in return
for maintaining a close approach to minimization of estimation err)r.
This flexibility of the soft-constraint LMS algorithm could be an
advantage in buiiding adaptive antenna arrays which attenuate strong
Jjammers while maintaining reception in directions where desirable
signals are expected to appear.

This paper has also derived a relation between the output power
of a signal from a converged soft constraint LMS adaptive filter and
the signal input power. This relation demonstrated the unexpected
behavior that in some cases, although the input power is increasing
monotonically, the output power could increase, then decrease to zero,
and then increase again. Another interesting case was shown where the
output power increases to a peak, and then decreases monotonically,
while the input power is increasing monotonically. It is possible that
useful applications of these output power phenomena exist; this is an
area for future research. In addition, no physical interpretation for
the matrix Y wused in the development has been presented; some
properties of ¥ are given at the end of appendix F. This remains

an area for further study.
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It was shown that the LMS, Teaky LMS, and Zahm's algorithms are
all special cases of the soft-constraint LMS algorithm. Thus, results
for the soft-constraint LMS algorithm also hold for these previous
algorithms. It was also shown that the optimum solution to a soft
constraint problem approaches the optimum solution of a hard constraint
problem as the stiffness of the soft constraints goes to infinity.

Thus the soft-constraint LMS algorithm is a generalization of
several existing algorithms. It has potential usefulness in a number

of areas.




B APPENDIX A

X PROOF OF THEOREM 1: CONVERGENCE OF THE MEAN WEIGHT VECTOR

OF THE SOFT-CONSTRAINT LMS ALGORITHM

The theorem statement is:

Theorem 1: (Convergence of the Mcan Weight Vector

If 1) The soft-constraint LMS algorithm (8-7) or (8-8) produces
a weight vector sequence W(j) from a data vector sequence

X(j) and a desired signal sequence d(j), and if
2} W(j) and X(j) are statistically independent, and if

3) The matrix ngng is nonsingular, and if

! 4) 0<U<A] 9
max

Then the mean weight vector converges to the optimum weight vector:

jl;m E(W(j)} = Nopt (A-1)
The proof requires an expression for E{W(j)}. The update algorithm %

for W(j) is the soft-constraint LMS algorithm (8-8):

M(3+1) = (I-2ATBAMW(S) + 2ue(3)X(3) + 2ATBH . (A-2)

Expanding e(j) using (3-4) and regrouping terms yields:

Wi+ = {L:Zu[X(J)XT(j)+AT§AJ}N(J) + 2u[d(J)X(j)+AT§ﬁ] : (A-3)




g o

Taking the expectation of this update equation, and using the assumption

that X(j) and W(j) are independent random processes yields:

EMWN(3+1)} = [I-2u(R+*ABA)IEIN(I)} + 2u(P+ATBH) . (A-4)

This recursion equation is identical (after regrouping of terms) to
the recursion equation which is obtained for the weight vector when
perfect gradient measurements are available (7-2). Thus the mean of the
weight vector follows the trajectory that is obtained when perfect
gradient measurements are available.

Iterating (A-4) yields the relation:

. R i
EMW(3)} = [1-2u(R+ATBA)IW(0)+2u (L [1-2u(R+ATBA)IT} (P+A'BH) . (A-5)
t=0

The summation can be replaced by use of the matrix identity:

wbo= (e aemt (A-6)

Using this identity in (A-5) results in:

EMW(§)} = [I-2u(R+ATBA)I9W(0)

+ 2uil-[1-2u(R+ATBA) 19 H(I-(1-2.(R+ATBA) 12 (P+A

[1-2(R+ATBA) 19 [W(0)- (R+ATBA) "' (P+ATBH) ]
BA)” ! (P+ATBH) . (A-7)

Recalling the expression for the optimum weight vector (6-3) and sub-

stituting this relationship in (A-7) yields:
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. = - T J - _
E{W(J)} [I-2u(R+A 'BA) ]°[W(0) wopt] + wopt (A-8)
Then (A-1) will be true for all W(0) if and only if
. T N
Vim [I-2u(RATBA)Y = 0 . (A-9)

J-»co
This is true if and only if the magnitude of every eigenvalue of the
matrix [l;Zu(BfATQA)] is l1ess than one (by the assumptior of nonsingular-

ity, every eigenvalue is nonzero). This condition is written as:

-2 ] < t=1, ..., n (A-10)

where A, is the tN eigenvalue of the matrix BfﬁTgA. This condition

will be satisfied if and only if

0 <y for all t, t=1, ... n . (A-11)
t
Since
g for all t=1 1
— < 1 or all t=1, ..., n (A-12)
max t

the required condition is

(A-13)

0 <uc«
max

When this condition is satisfied, (A-9) is true, so that under the stated

assumptions the conclusion (A-1) of Theorem 1 is true.




APPENDIX B
PROOF OF THEOREM 2: WEIGHT VECTOR COVARIANCE MATRIX RECURSION

The statement of Theorem 2 is:

Theorem 2: Weight Vector Covariance

If
1) Theorem 1 holds, and if
2) W(j) and d(j) are statistically independent, and if

3) d(j) and u(j) are gaussianly distributed.

then the recursion equation for the weight vector covariance is5:

C(3#1) = [L-2u(R+ATBA) 1c, (3) [1-20(R+ABA) ]
+ auBlRC, (IR + RTrIC, (IIR] + REE®(3) fyuupr5))
+ [P-R(3)1(P-RH(1T} . (8-1)

The proof begins by recalling the recursion expressions for the
weight vector W(j) and the mean weight vector W(j). The expressicn

for W(j) from (8-7) is:
W(3+1) = W(3) + 2ue(3)X(5) - 2uATBIAW(S)-H] . (8-2)
The expression for W(j) from rearranging (A-4) is:
W(:+1) = W(§) + 2uP - 2uRW(3) - 2uATBAW(S) + 2uATBH. (B-3)
Define the difference between the weight vector and its mean by:
AW(3) = W(j) - W(J) (8-4)

Combining (B-2) and (B-3) results in a recursion equation for AW(j):
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i

E p(§+1) = aW(j) + 2u[d(§)x(§)-P]

| L 2ulX(XT ()W) -RH()] - 2uATBASH(S) . (B-E)

1 Using recursion (B-5) in the definition of a covariance matrix
yields:

7
ECIW(3+1) -3+ NG W+ Y )

Cg (31

ELAN(§+1 )M (3+1))

T

ELAN()aNT(5) + 2uaW(3)[A(3)X(3)-P]

2 (5 OO (XK (3) AT (3ORT - 2uaH(3) N ()23

T
i

2u[d(3)X(3)-PIaHT (3) + 4lLd(3)X(3)-PILA(IIX(3)-P]

+

4 20d(5)X(3)-PIHT ()X()XT ()T (3)R]

- au%[d(5)%(3)-P1aw" (3)ATBA

20X (3)XT(5)W(3)-RR(3) JawT (3)

an2[x(5) T (3 )W(3)-RR(H) 10 (3)K(5)-PTT

w200 KT (M) -RRC) IO (X XT ()T

+

3R]

+

8200057 (W3 ) -RR(S) T (3)AT8A

T3y - au2aTBARK(3) [A(3)X(3) P

- 2.ATBASH(]) oM

- 2 28 B () I AT (3) W (3R]

s

s s (5)ATBAY (8-6)




Now using the assumptions of independence, and noting that E{AW(j)}=0,

terms 2, 5, 8, and 14 become zerc. Regrouping terms then yields:

+ 42D WM XGIXT () -RIHTT ()R (8-7)
t Now it can be shown that for W(j), d(j), and X(j) assumed gaussian:
EC2()X(EXT(3)} = ECR(I)IR + 20PT (8-8)
ECXEW (DXAXT(S)Y = PRTIR + RIGIPT + RPTR(I)  (8-9) |
EX(XT WA DXDRTE)) = 2R, (IR
.f + RN (5)R I
+ RTr(C, (3)R] {1

g + RTP(N(W ()R] . (B-10)

These relations are shown by expanding each element of the matrices on
ﬂ the left hand sides individually by using the summations implied by the
matrix notation on the right hand sides, applying the expression for the

expectaticn of 4 jointly distrituted gaussian random variables

(eq. 7.2-15 of [23]), and reconstructing the matrices.




Now, applying relations (B-8) through (B-10) to equation (t- ;.

cancelling terms, and regrouping yields:

Cyg(3+1) = [1-2u(R+ATBA) ]G, (3) (- 2u(R4ATBA) ]

+ 4p?{RC,, (1R + RTLC,, (5)R]

+ RIE:A2(4)} - 2PTH(3) + W (3)RWLS ]

+ [PPT-RW(3)PT-PHT (5IRARA (5)RTY . (3-1
Now, the mean square error evaluated at the mean weight vector is
E{dz(j)}-ZPTW(j)+WT(j)3W(j). Substituting this relation yields the
theorem's conclusion:
Co(3+1) = [1-2u(R*ATBA)IC,, (3)[1-2u(R*ABA)]
W STERARTS R LT RS 28
24
+ 4% IRC, (JIR + RTP(C, (5)R]
2, .
+ RE{e (J)lw=w(j)}
+ [P-RW(3)1[P-RW(j )]T} : (8-12)

This concludes the proof of the theorem.




APPENDIX C

PROOF OF THEOREM 3: SUFFICIENT CONDITIONS FOR BOUNDEDNESS

OF THE TRACE OF THE WEIGHT COVARIANCE MATRIX

The statement of Theorem 3 is:

Theorem 3: Sufficient conditions for boundedness of the trace of

the trace of the weight vector covariance matrix

1) If Theorem 2 holds, and

. 2
2) if a) Tmax * YmaxTr[R] < Xmax'\min
and
Amin
Pews 22+ Y2 + v __ Tr[R] ;
min max ‘max = —
. 2
or if b) Ymax * YmaxTr[R] Z-Amaxxmin
and
A
ma x .
Qenws T v . Tr[R]
max = Ymax = Ymax''t%

Then Tr[gww(j)] will be bounded for all time.
To determine conditions under which the weight vector covariance
matrix is guaranteed to remain finite, consider the recursion of the

trace of the weight covariance matrix (Eq. 9-7).

e




First, for any matrices E, F, and G:

TrlEFG] = TrlGEF] . (c-1)
Applying this relation to (9-7) yields:
Tr[C(7#1)] = Tri[1-2u(R+A'BA) I[1-2u(R+ATBA)IC,, ()}
+ @{Tr[RRC,, (1) + TrIRITrIRC,, (§)]
+ Tr[gJE{ez(a
+ [P-RU(ITIP-RA(DT) (c-2)

Now Moschner showed (relation 2.10 in [24]) that for F a real

symmetric matrix and G a positive semidefinite matrix that:

Tr{FG] < max{eig{F}}Tr[G], (C-3)

——~
o
)
B
-

Tr(FG] > min{eig{F}}iTr{G] .

By repeated application of (C-3) on (C-2) the trace of wa(j+1) may be
bounded:
. 2 .
TriC(3+D ] < 8, TriC,, ()]

+4 2{ iaxTr[C W31+ y, TrIRITr(C,, ()]

+ [P-RH(3)1T[P-RW(4)1} | (C-5)
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2.2
max ~ Ymax

Tr[R])Tr[ 1

. 2
TriC 3+ ] < (8, + &y

; 4u2~{Tr[3]E{e2(j)lw=;‘—(j)}

+ [P-RH(5)1TTP-RH(§) 1} (c-6)
where
Brax = Max{|eig{l-2u(R+ATBA)} [} (c-7)
Ymax = max{eig{R}} . (C-8)
This inequality fits the form:
TriC (3+1)] < aTrC,, (3)1 + c(J) (C-9)

where a is a positive constant, and c(j) is bounded in value. From
linear system theory it is known that Tr[gww(j)] will remain bounded

when a < 1, Therefore if

2
Bmax * WY

2 2 2

+ 4y YmaxTr[BJ <1 (C-10)

then Tr[gww(j)] will remain bounded.

To evaluate the inequality of (C-10) requires knowledge of Bma
Bhax is the absolute value of the eigenvalue of (1- 2u(R+A BA)] which has
the greatest magnitude. Now, the eigenvalues of [I-21( R+A BA)] are
1-2ul;, where the A; are the eigenvalues of B}ATﬁA, The maximum eigen-
value is ]'Z“Xmin’ and minimum eigenvalue is 1-2ukmax, because A; > 0.

Thus Bmax is the absolute value of one of these expressions:

8 = max{|1-2uA

max | 1-2ux

min! . (C-11)

max




Now, since Ama > A The only way that

x ” Amine 1mAR G, < T-2uAL .
Il-ZuAmaxl might be greater thap II-ZuAminl is when 1-2ux . is negative

but has a greater magnitude than ]'zuxmin‘ Thus the requirement is

]'zuxmin m

finally yields the result that

> Z“Amax'] for 8 ax ° l-ZuAmin. Solving this inequality for p

1

]‘ZUA . 3 '|f M
min Kmax+kmin

A

Brax = (c-12)

1

2ux . -1, if p
Amax+lmin

max

v

These expressions for B are now used to determine where (C-10)

max
holds true.
1 . . ,
Case 1: when y < ——————, substitution for B in (C-10)
max+kmin max
results in:
(1-2w0 . ) + 8%2. + apy  Tr[R] < 1 (C-13)
min max max = -—

which can be solved to yield the additional condition on u:

A .
H < 2 7 min {(C-14)
>‘mini'\(max’\“(maxw[g-]
Thus if
AL
0_<_u<m'in<>‘ lx. , 57— > (C-15)
max “min Amin+Ymax+YmaxTr[BJ

then a < 1, and Tr[gww(j)] is guaranteed to remain bounded.
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1
+\ .
MmaxAmin

Case 2: when u >

in:

2.2

2

, substituting Bmax into (C-10) result.

2
(2uAa 1" * STy, * BTy, Tr[R] <) (C-16)
which yields the conditions on u of:
\ .
kmax
u < S 5 {c-17
Amax+Ymax+YmaxTr[BJ
Thus if
A
1 max :
—— Su< (C-1¢.
Xmax+xmin kz +Y2 +y_. TriR]

max 'max 'max

then a < 1, and Tr[gww(j)] will remain bounded.
The conditions on u derived in the two cases may be manipulated to

yield a more acceptable form. Note that if:

Tr(R] < A, A

max (C-1¢

2
Ymax+Ymax min

then the condition of the first case is satisfied when u is in the range

kmin
g
max '‘max

D<u< 5

< (C-20)
A

min Tr(R]

and the conditions for the second case are never satisfied. This proves

the first ha1f of the theorem's conclusion.
Now consider the situation when

2
max+YmaxTr[BJ 2 Mpax?

max (C-21)

Y min




Then the conditions of the first case are satisfied when

1

O<ucx €-22)
Amax+xmin
and the conditions of the second case are satisfied when
A
— << max : (C-23)

A A 2 2
max . min Amax+Ymax+YmaxTr[5]

These two ranges for u may be combined to yield the single range of

A
0<u< st : (C-24)
Amaxﬂmaxﬂmax‘rr[g

This is the proof of the second half of the theorem's conclusion.
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APPENDIX D

PROOF OF THEOREM 4: NECESSARY CONDITIONS FOR BOUNDEDNESS OF THE TRACL

OF THE WEIGHT VECTOR COVARIANCE MATRIX

The statement of Theorem 4 is:

Theorem 4: Necessary conditions for boundedness of the tracs of the

weight vector covariance matrix

For Tr[ j)] to be a bounded sequence, it is necescary trat

1)  Theorem 2 hold, and also that

22) When vZ. 4y . Tr[R] 322,
Amax
that 02 < X inTr[R]
max = 'min T 'm
2 2 2
b) When lm1n < Ymin YminTr[R] b Amax ’
1
that 0 < u <
2
J Ymin m1nTr[R]
) When 2 TrR] < A2,
¢ Ymm Ymin min °’
Xmin
that 0 < u < —5 >
Amin ¥ Ymin Tr(R]
82




To find a necessary condition for Tr[gww(j)] to remain bounded,

consider finding a sequence &(j) which is a lower bound for the sequence
_ww(j)]. Then the sequence &(j) must remain bounded for Tr[gww(j)],
to be bounded, since if §(j) grows without bound, and s(j)gfr[gww(g)],
then Tr[ )] will also grow without bound. Applying (C-1) and then
(C-4) to Eq. (9-7) in a similar manner as in Appendix C yieids:

Te{C (34117 2 83 TrCy ()] + 4uiy3 TrlCy,(3)]

+ auby o Tr[RITLC,,(3)]

. 4u2{Tr[E]E{ez(j)lw=W(j)}
+ [P-RH(3) | P-RW(J')]} (0-1)
where
Brin ° min{|eig{1-2u(R+A'BA)}|} (D-2)
Ymin - min{eig{R}} . (D-3)
Define the recursion for &(j) as
s(3+1) = (82, smBE st TeRDS()

+ 4y [TY'[ N(J ]E{e HN=W(J')}
+ (P-RW(3))T(P-RW(4))] (D-4)

and




The equation for &8(j) is of the form:
§(3+1) = as(3) + c(J) (D-6)

where a is a positive constant, and c¢(j) is a positive bounded sequence.
Again from linear system theory, 6(j) will be bounded if and only if
a<l. Evaluation of a requires knowledge of Bmin' Recall that

1-2uX > ]-Zuxmax' Therefore, if ]'Z“Amax > 0, 8m1n=]'2“kmax' However,

min
if ]'Z“Amin < 0, then Bmin = zuxmin']‘ Otherwise, it is possible that

for some i, 1-2ux1 = 0, so Bmin=0 in this case. Thuse

1-2uX if uc< -
max - 2Amax
B .= { 2un -] ifus o (D-7)
min min = 2hiin
0 otherwise
Case 1: Consider the value of a when u < zxmax . Then 3. =T-2uA 00
resulting in
. 2 2.2 2 _
a = (]-Zu)\max) + 4p Yin * 4y yminTr[EJ <1 . (D-8)
Solving for u yields
A
u < 2 2 max . (D-g)
max+Ymin+YminTr[BJ

Combining the two conditions on u yields the result that if
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A
u < min [ — max - (D-12)

2\
max"’Y inYmin Tr(R] max

then a < 1.
, 1 ]
Case 2: Now consider the case when —— <y < . Then 8 . =0,
ZXmax Zlmin min
and the condition on a is:
. 2 2 2 ‘
a = 4y Ymi + 4y m1nTr[R] <1 (D-11)
Selving for u yields
1
u < . (0-12)
2
2\F{mm m1nTr[R]
The conclusion is that if
Fro— < < min . ] 7%
max min
2\JYmin%{minTr[B]
then a < 1. (Note: this requires that
zx] < ! (D-13)
max 2
2 J men m1nTr[R]
or else ro range exists.)
Case 3: Finally, consider the remaining case when p > ZX] . Then

min

B = Z“Amin']’ and the condition on a is written:

min




2

2.2

a = (ZuXmin-1) + 4y Yoin t 4“YminTr[BJ <1 . (D-14)
Solving for u yields
< >‘min (D-"5;
’ Aiin+yiin+YminTr[BJ . -
Thus, if
EXlT" > N mein (0-18)
min min+Ymin+YminTr[B]
then a < 1. Note that if
xmin < 1 (D-17)
;§}n+Y§in+YminTr[EJ kain
then a > 1 whenever u > 2%1.
min

Grouping these results for the three case~ of u together in a

manner similar to that used in the procf of Theorem 3 yields the result:

a <1, if:
1) When v2, ++y_. Tr[R] > A2
Tmin 7 Ymin' 2 max °
A
0<y< max :
A2 2 4ty . Tr[R]
max Ymin min = t—
2 2 2
2)  When Amin-i Ymin * YminTr[BJ Al xmax’
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» : A .

, 7 7 -
+ +y .
. Apin © Ymin Ymin (R

If none of these conditions are satisfied, then a > 1, and &§(j) will be
an unbounded sequence, which implies that Tr[gww(j)] is an unbounded
sequence. Thus satisfaction of the above conditions is a necessary

(but not sufficient) condition for Tr[gww(j)] to be a bounded sequence.

87




b G o

APPENDIX E

DERIVATION OF A CALCULABLE BOUND ON . WHICH SATISFIES THE CONGITIONS

FOR CONVERGENCE OF THE MEAN WEIGHT VECTOR AND GUARANTEED BOUNDE.E3S

F THE WEIGHT VECTOR COVARIANCE MATRIX

Section 9 proposes a bound on u which is calculable ard sgrisfi«
the ceonditions on u in Theorems 1 and 3. This appendix demonstraze:
that the bound satisfies these criteria.

The bound (9-8) proposed is:

] . (1
3Tr(R] + Tr{ATBA]

0 <yuc«

Satisfying Theorem 1.

This bound satisfies the conditions for convergence of the mean

weight vector (Theorem 1) since: ]

NN L, I R
max Tr{R] + Tr[A 'BA] 3Tr[R] + Tr[A BA]

Thus if
1
0<pc< T , (E
37r[R] + Tr[A BA]
then {
O<u< X] N (ld

max

satisfying the condition on u of Theorem 1.
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Satisfying Theorem 3.

This bound (E~1) also satisfies the conditions on . which guarantees
boundedness of the weight vector covariance matrix (Theorem 3):

Case 1 of Theorem 3: using the condition of case 1, the fuiiwwing
insquality may be written:

A

Xmin < min
N e T a8 448wy Tr[R]
min max min min © Ymax © Ymax'' ‘%
Then
1 < Amin
X .+t A - .2 2
min = "max Min ¥ Ymax T Ymax " [R]
1 - <
Tr[R] + Tr[A'BA]
1 < >‘min
T - .2 2 R
3Tr[R] + Tr[A'BA) Amin © Ymax * (maxTr[BJ
Thus if
0O<uc«< ] T . AN
3Tr[R] + Tr[A 'BA]
then
A .
min VR
O<u< 2 2 . .

Amin ¥ Ymax * Ymax " [R]

satisfying the condition on u of Case 1 of Theorem 3.




e o P —————— " . e e Tee e o

Case 2 of Theorem 3: Begin with the equality:

1 A

- max
Y Y 2 2
Xmax + ymax .}ﬂgi + Tm—al(‘TY‘[B] )\max + Ymax + YmaxTr[B-]
‘max “max
NOW Anax Tmax® 5°
1 < lmax
N = 2 2 . -
Mmax * Ymax * TR Amax ¥ Ymax ¥ Ymax LR
1
T s
Tr[R+*A'BA] + Tr[R] + Tr[R]
] < xmax
T - .2 2, Tr[R]
Tr{A'BA] + 3Tr[R] Amax * Ymax t Ymax'T(R
Thus if
1
0 <wucx T (E‘7)
3Tr[R] + Tr[A'BA]
Then
xmax
0 <uc< 3 7 ’ (E"8)
max * Ymax ¥ Ymax "R

satisfying the condition on . of case 2 of Theorem 3.
Since both cases of Theorem 3 are satisfied, the proposed bound
(E-1) on u will guarantee boundedness of the weight vector covariance

matrix.
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Calculability

Tr[ATgA] is certainly calculable, since the matrices are all

specified by the designer. Tr[R] is also computable as discussed in

section IX; it is n times the input power to the filter.




APPENDIX F

SIMULTANEQUS DIAGONALIZATION OF TWQG HERMITIAN MATRICES

This appendix shows that a transformation exists which simultaneously
diagonalizes two hermitian matrices. This is a previcusly solved problem,
included nere for completeness {25,26]. This appendix foilows tictia's [25]
development. Gantmacher [26] arrives at the same results by a different

path.

A

The theorem is stated as follows: Given two hermitian matrices A
and B with B nonsingular, a matrix S exists such that §f§§'= I, tre
identity matrix (where §f denotes the complex conjugate transpose of the
matrix S), and §f5§ = ¥, where ¥ is a diagonal matrix.

The proof begins by noting that for any hermitian matrix there exists
a unitary transformation which will diagonalize that hermitian matrix.
Thus, for the hermitian matrix B there exists a unitary matrix P such that
gfgg = iB’ where 43 is the diagonal matrix with diagonal elements which
are the eigenvalues of matrix B.

Denote the diagonal matrix which has as elements the square roots of

the eigenvalues of B as gé/z, 7ielding the relation (gé/2)+%é/2 = 2.
Under the assumption that ‘g {and thus B) is nonsingular, ;%/2 is

also nonsingular. Using the inverse of gé/z results in the relation:

(£-1)

L3 1 e (24!

jr

Thus the matrix g(gé/z)“ transforms B to an identity matrix.
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Now consider applying this transformation to the hermitian matrix A.

This would result in the matrix:

[/ D)* 17" AP(W2> . (F-2)

This matrix is also hermitian. Therefore, there exists a unitary matrix

Q such that the resulting unitary transformation diagonalizes the matrix
of expression (F-2), yielding:

OGNS R I R IR (F-3)

where ¥ is a diagonal matrix. Note that Eﬁ_;/z) ‘Q is a transformation

which will diagonalize the matrix A. Denote this transformation by S:

s 2 /37 (F-4)

Now apply this transformation to the matrix B.

Since P was originally chosen so that P *3p = ¥

s'es = QgD eteR/ S (F-5)
By application of (F-1)
s'Bs = Q7
=1, (F-6)

since Q is a unitary transformation. Therefore the matrix S satisfies

the two relationships

w
[+
w
n
(L)
.
—
-
~3
o




where ¥ is a diagonal matrix and § = gg;/zg, where P is a unitary matrix

which diagonalizes B, gé/z is a diagonal composed of the sgquare roots of

the eigenvalues of B, and Q is a unitary matrix which diagonalizes
1/2\#9=T % x4 172, -1
[(gg" ") TP AP(¥" %) 7.
Although deeper knowledge of S and ¥ is not rejuired, the following

properties can be shown:

1) The columns of S are the eigenvectors of the matrix B°]A

2) The values of the diagonal elements of ¢ are the eigenvaiues

1

of the matrix B A.

These properties can be shown as follows: Begin with the relation:

ss =y (F-9)
Then
ps = (sHTy . (F-10)
Now, premultiply by gf‘:
B7as = g7l(sH e (F-11;

An expression for Ef](§f)'1 can be found by considering the relation:
s'Bs = 1 . (F-12)
Inverting both sides yields:
(897" = DT -1 (£-13)

Then premultiplying by S yields:

g'sh - s . (P13
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Substituting this relation in (F-11) yields:

BAS = sy (F-15)

which shows that the columns of S are the eigenvectors of gf]ﬂ_and the

diagonal elements of ¥ are the corresponding eigenvalues.
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APPENDIX G

PROOF OF THEOREM 5: (QPTIMUM WEIGHT VECTOR FOR SOFT-CONSTRAINT LMS

ALGORITHM GOES TO OPTIMUM WEIGHT VECTOR FOR FROST'S HARD CONSTRAINT

| LMS ALGORITHM

The theorem statement is:

Theorem 5: Soft Constraint Solution Goes to Hard Constraint Solution

If

1) The weighting matrix B in the soft constraint algorithm is
replaced by yB, so that the weighting on the constraints may be

increased simultaneously by increasing the scalar vy, and if
2) The data vector autocorrelation matrix R is nonsingular and if

3) The weighting matrix B is nonsingular, and the matrix A is ful)

rank, then

Yl;m Nopt = th (G-1)
Proof: The proof begins by writing wopt in terms of yB from (6-3):
W = (R+vA'8A)7' (P + yaA'BH)

opt

Now apply the matrix inversion lemma (section 5.7 of [25]) to R + YATEAL
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Mgy = [R7 - RTATEE™ + aR'aT) TR

-1,71

Al(dg!
— Y——

+ [_R_-] - R + A_R_-]A_T)-] _A_B_-!]YATB_H

~—

The conditions of the lemma are guaranteed to be satisfied in this
; use and in the next, due to the assumptions made on R, B, and on A.
This assumption is also required by Frost to yield a unique optinum

weight vector for his algorithm. Now apply the matrix inversion lemma

to %ﬁf] + ABT]AT in the second term: ]
PSR ERNR IS O JRN IR I 20 B g
Wopt [R RAA(B +ARA) AR i

+ {R"-R"A (YR

— -_— - — e

-(ARTAT) T yes (AR TAT) 77 (Ag.lg)-l}ﬁ-]}%jgﬂ
(6-3)

Now factoring out Bf] as a postmultiplier in the first term and as

a premultiplier in the second term, and multiplying the AT factor of

ATQ& in the second term through yields:
“1,T,1,-1 “1,Ty=1,9p-1

1,T

SR AT e ar AT 11 ar AT Y e,
(G-4)
Since (ggf‘AT)"(ggflaf) = 1, the second term reduces, yielding:
i “1,T,1,-1 -1,T\-145-1
Wopt = [L-RA(B " + AR A) AR P
N B_-l{AT_AT[l_(A_R_-lﬁT)q[Ygf(&-]ﬁr)-}]—q}@
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I A

R R DR
+ R ‘{AT ATa' (ar™TAT) ' LB ar
Now,
vim (2871 + arTAT Y = (R
\{-m
and
{ -] T -
Tim (y8 + (ART'A")" '] 'vB = Tim {
"f—kx; ‘{4'00
So
r '.‘ T ‘] Y
Tim wopt tl-R A(AR A -
'Y‘)Q)
e T Al T

and since from {2.8) of Frost [9] (when rewrittar in =72 -,

of this paper):

the conclusion is

and the theorem is proved.
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